Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.875
Filtrar
1.
Pestic Biochem Physiol ; 199: 105772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458665

RESUMO

Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.


Assuntos
Hemócitos , Neonicotinoides , Nitrocompostos , Praguicidas , Toluidinas , Abelhas , Animais , Imunidade Inata , Fagocitose , Praguicidas/toxicidade
2.
BMC Biol ; 22(1): 60, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475850

RESUMO

BACKGROUND: Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS: While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS: Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.


Assuntos
Drosophila , Vespas , Animais , Humanos , Drosophila melanogaster/metabolismo , Vespas/genética , Mitocôndrias , Imunidade Inata , Hemócitos/metabolismo
3.
Nat Commun ; 15(1): 2117, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459063

RESUMO

Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.


Assuntos
Anaplasma phagocytophilum , Artrópodes , Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Hemócitos , Ixodes/microbiologia , Borrelia burgdorferi/fisiologia
4.
Fish Shellfish Immunol ; 148: 109513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521141

RESUMO

LPS induced TNF-α Factor (LITAF) is a transcription factor widely involving in activation of Tumor Necrosis Factor (TNF) and other cytokines in the inflammatory response. In the present study, a homologue of LITAF with a conserved LITAF domain was identified from the Pacific oyster Crassostrea gigas. The transcripts of CgLITAF were detected in all examined tissues with highest expression in hepatopancrease. The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgLITAF protein in haemocytes. While the mRNA level of CgLITAF changed slightly after LPS stimulation. When the siRNA of CgLITAF was injected to inhibit its expression, the apoptotic level of haemocytes decreased observably after LPS stimulation. Consistently, the transcripts of CgTNF3 and CgTNF4 (LOC105343080, LOC105341146), the apoptotic-related molecules including CgBax, CgCytochrome c, CgCaspase9 and CgCaspase3, were significantly suppressed in the CgLITAF-RNAi oysters. While the mRNA expression level of CgBcl was enhanced significantly in the CgLITAF-RNAi oysters. These results indicated that CgLITAF promoted haemocyte apoptosis by regulating the expression of apoptotic-related factors, suggesting its important role in the immune response of oysters.


Assuntos
Crassostrea , Animais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Hemócitos , Apoptose , Imunidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imunidade Inata/genética
5.
Int J Biol Macromol ; 264(Pt 2): 130470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453124

RESUMO

LKB1 (liver kinase B1) is a key upstream kinase of AMPK and plays an important role in various cellular activities. While the function and mechanism of LKB1 have been widely reported in the study of tumor, there are few reports on its role in bacterial infectious diseases, especially in shrimp. In the present study, molecular characterization revealed that LvLKB1 has an open reading frame (ORF) of 1266 bp encoding 421 amino acids with a molecular weight of about 48 KDa, including the kinase region, N-terminal regulatory domain and C-terminal regulatory domain. LvLKB1 in hepatopancreas and hemocytes was significantly upregulated after infection with Vibrio alginolyticus (V. alginolyticus). After silencing LvLKB1 gene in Litopenaeus vannamei (L. vannamei) and artificially infecting V. alginolyticus, the survival rate of L. vannamei was significantly decreased. Subsequently, it was found that the expression of inflammatory factors in hepatopancreas and hemocytes of shrimp was up-regulated, and the expression of lipid oxidation factors was decreased after silencing LKB1, leading to the phenomenon of lipid accumulation in hepatopancreas. In order to explore the mechanism, autophagy levels of shrimp were detected after silencing LKB1, which showed that autophagy levels in hepatopancreas and hemocytes were significantly reduced. Further studies conclusively showed that silencing LvLKB1 inhibited AMPK phosphorylation induced by V. alginolyticus infection, thereby activating TOR pathway and inhibiting autophagy in shrimp. These results indicate that LvLKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by V. alginolyticus infection.


Assuntos
Penaeidae , Vibrioses , Animais , Vibrio alginolyticus/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia , Lipídeos , Penaeidae/microbiologia , Imunidade Inata/genética , Hemócitos/metabolismo , Proteínas de Artrópodes/química
6.
Int J Biol Macromol ; 264(Pt 1): 130503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428783

RESUMO

Mannose-binding lectin plays an essential role in bacteria or virus-triggered immune response in mammals. Previous proteomic data revealed that in Eriocheir sinensis, the mannose-binding protein was differentially expressed after Spiroplasma eriocheiris infection. However, the function of mannose-binding protein against pathogen infection in invertebrates is poorly understood. In this study, a crab mannose-binding protein (EsMBP) was characterized and enhanced the host resistance to S. eriocheiris infection. The application of recombinant C-type carbohydrate recognition domain (CTLD) of EsMBP led to increased crab survival and decreased S. eriocheiris load in hemocytes. Meanwhile, the overexpression of CTLD of EsMBP in Raw264.7 cells inhibited S. eriocheiris intracellular replication. In contrast, depletion of EsMBP by RNA interference or antibody neutralization attenuated phenoloxidase activity and hemocyte phagocytosis, rendering host more susceptible to S. eriocheiris infection. Furthermore, miR-381-5p in hemocytes suppressed EsMBP expression and negatively regulated phenoloxidase activity to exacerbate S. eriocheiris invasion of hemocytes. Taken together, our findings revealed that crab mannose-binding protein was involved in host defense against S. eriocheiris infection and targeted by miR-381-5p, providing further insights into the control of S. eriocheiris spread in crabs.


Assuntos
Braquiúros , Catecol Oxidase , Precursores Enzimáticos , Lectina de Ligação a Manose , MicroRNAs , Spiroplasma , Animais , Lectina de Ligação a Manose/metabolismo , Proteômica , Monofenol Mono-Oxigenase/metabolismo , Fagocitose , MicroRNAs/genética , MicroRNAs/metabolismo , Hemócitos/metabolismo , Mamíferos/genética
7.
J Hazard Mater ; 469: 134061, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508113

RESUMO

Hemocytes are important targets for heavy metal-induced immunotoxicity in insects. This study aimed to investigate the mechanism by which cadmium (Cd) exposure affects the hemocyte count in Lymantria dispar larvae. The results showed that the number of larval hemocytes was significantly decreased under Cd exposure, accompanied by a significant increase in the apoptosis rate and the expression of Caspase-3. The endoplasmic reticulum (ER) of hemocytes in the Cd-treated group showed irregular swelling. Expression levels of ER stress indicator genes (CHOP, Bip1, Bip2, Bip3, and Bip4) were significantly higher in the Cd-treated group. Among the three pathways that potentially mediate ER stress, only the key genes in the ATF6 pathway (ATF6, S1P-1, S1P-2, and WFS1) exhibited differential responses to Cd exposure. Cd exposure significantly increased the levels of reactive oxygen species (ROS) and the expression of oxidative stress-related genes (CNCC, P38, and ATF2) in hemocytes. Studies using inhibitors confirmed that apoptosis mediated the decrease in hemocyte count, ER stress mediated apoptosis, ATF6 pathway mediated ER stress, and ROS or oxidative stress mediated ER stress through the activation of the ATF6 pathway. Taken together, the ROS-ATF6-ER stress-apoptosis pathway is responsible for the reduction in the hemocyte count of Cd-treated L. dispar larvae.


Assuntos
Cádmio , Hemócitos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cádmio/toxicidade , 60626 , Larva/metabolismo , Apoptose
8.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396656

RESUMO

A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.


Assuntos
Ciona intestinalis , Animais , Ciona intestinalis/genética , Hemócitos/metabolismo , Peptídeos/metabolismo , Faringe , Imunidade
9.
Sci Rep ; 14(1): 3968, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368470

RESUMO

Horseshoe crabs are among the most studied invertebrates due to their unique, innate immune system and biological processes. The metabolomics study was conducted on lipopolysaccharide (LPS)-stimulated and non-stimulated hemocytes isolated from the Malaysian Tachypleus gigas and Carcinoscorpius rotundicauda. LC-TOF-MS, multivariate analyses, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) were included in this study to profile the metabolites. A total of 37 metabolites were identified to be differentially abundant and were selected based on VIP > 1. However, of the 37 putative metabolites, only 23 were found to be significant with ANOVA at p < 0.05. The metabolites were identified using several databases, and the literature review of the metabolites was reported in the manuscript. Thus, this study has provided further insights into the putative metabolites' presence in the hemocytes of horseshoe crabs that are stimulated and non-stimulated with LPS and their abundance in each species. Several putative metabolites showed they have medicinal values from previous studies.


Assuntos
Caranguejos Ferradura , Lipopolissacarídeos , Animais , Hemócitos , Caranguejos Ferradura/imunologia , Caranguejos Ferradura/metabolismo , Lipopolissacarídeos/farmacologia
10.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323810

RESUMO

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Assuntos
Proteínas de Artrópodes , Hemócitos , Interações entre Hospedeiro e Microrganismos , Penaeidae , RNA-Seq , Análise da Expressão Gênica de Célula Única , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Penaeidae/citologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/imunologia
11.
Mar Pollut Bull ; 201: 116174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382322

RESUMO

Methane are widely used in industry as an emerge source may be released significantly higher aquatic ecosystems due to gas seepages. In this study, short-term (90 min) methane effects on bivalve hemocytes were investigated using flow cytometry. Hemocyte parameters including hemolymph cellular composition, phagocytosis activity, mitochondrial membrane potential and reactive oxygen species (ROS) content were evaluated in the mussel Mytilus galloprovincialis (Lamarck, 1819) exposed to hypoxia (control group), pure methane and industrial methane (industrial hydrocarbon mixture). Comparison of biomarkers showed that the mussel was more sensitive to methane than to low oxygen concentration, supporting the effects of methane on the mussel's immune system. After exposure to pure and industrial methane, the number of granulocytes decreased dramatically and the levels of reactive oxygen species, mitochondrial membrane potential and phagocytosis capacity increased significantly. It was shown that the methane type-dependent effect was pronounced, with industrial methane leading to more pronounced changes.


Assuntos
Mytilus , Animais , Hemócitos , Espécies Reativas de Oxigênio , Metano , Ecossistema
12.
Cell Tissue Res ; 395(3): 313-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240845

RESUMO

Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.


Assuntos
Aedes , Culex , Animais , Óxido Nítrico , Hemócitos , Citrulina , Escherichia coli , Mosquitos Vetores
13.
Ticks Tick Borne Dis ; 15(3): 102312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38277717

RESUMO

Amblyomma sculptum (formerly Amblyomma cajennense) ticks have been implicated in the transmission of pathogens that cause diseases in animals and humans. Their wide geographic distribution and high impact on animal health and zoonotic disease transmission highlight the importance of studying and implementing effective control measures to mitigate the risks associated with this tick species. The aim of this study was to quantify and characterize the morphology and the ultrastructure of different types of hemocytes in the hemolymph in engorged A. sculptum females fed on rabbits. The hemolymph samples were collected by perforation of the cuticle in the dorsal region. Hemocyte types, sizes, and differential counts were determined using light microscopy, while ultrastructural analysis of hemocytes was performed using transmission electron microscopy. The average number of total hemocytes in the hemolymph was 1024 ± 597.6 cells µL-1. Five morphologically distinct cell types were identified in A. sculptum females: prohemocytes (6 % ± 8.8), plasmatocytes (10 % ± 7.7), granulocytes (78 % ± 12.2), spherulocytes (5 % ± 4.48), and oenocytoids (1 % ± 1.6). In general, prohemocytes were the smallest hemocytes. The ultrastructural morphology of A. sculptum hemocytes described in the present study agrees with the findings for other hard ticks. This is the first study to investigate ultrastructural characteristics of hemocytes of female A. sculptum ticks.


Assuntos
Ixodidae , Carrapatos , Animais , Feminino , Coelhos , Amblyomma , Hemócitos , Microscopia Eletrônica de Transmissão
14.
Fish Shellfish Immunol ; 145: 109356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163495

RESUMO

DM9-containing protein in invertebrates functions as pattern recognition receptor (PRR) to play significant roles in innate immunity. In the present study, a novel DM9-containg protein (defined as EsDM9CP-1) was identified from the Chinese mitten crab Eriocheir sinensis. EsDM9CP-1 is composed of 330 amino acids containing a Methyltransf_FA domain and two tandem DM9 repeats. The deduced amino acid sequence of EsDM9CP-1 shared low similarity with the previously identified DM9CPs from other species, and it was closely clustered with Platyhelminthes DM9CPs and then assigned into the branch of invertebrate DM9CPs in the unrooted phylogenetic tree. The mRNA transcripts of EsDM9CP-1 were highly expressed in haemocytes, gill, and heart. After Aeromonas hydrophila stimulation, the expression levels of EsDM9CP-1 mRNA in haemocytes increased significantly at 3 h (3.88-fold, p < 0.05) and 6 h (2.71-fold, p < 0.05), compared with that of PBS group, respectively. EsDM9CP-1 protein was mainly distributed in the cytoplasm and membrane of haemocytes. The recombinant EsDM9CP-1 protein (rEsDM9CP-1) exhibited binding affinity to MAN, PGN, LPS and Poly (I:C), and also to Gram-positive bacteria (Staphylococcus aureus, Micrococcus luteus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli, A. hydrophila and Vibrio splendidus) and fungi (Pichia pastoris and Metschnikowia bicuspidata) in a Ca2+-dependent manner. It was able to agglutinate A. hydrophila, S. aureus, M. luteus, M. bicuspidata and P. pastoris, and inhibit the growth of A. hydrophila and M. bicuspidate. These results suggested that EsDM9CP-1 in crab not only functioned as a PRR, but also agglutinated and inhibited the growth of microbes.


Assuntos
Braquiúros , Staphylococcus aureus , Humanos , Animais , Filogenia , Staphylococcus aureus/metabolismo , Sequência de Bases , Receptores de Reconhecimento de Padrão/genética , Imunidade Inata/genética , RNA Mensageiro/metabolismo , Braquiúros/genética , Hemócitos
15.
Fish Shellfish Immunol ; 145: 109361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185393

RESUMO

C-type lectins (CTLs) function as pattern recognition receptors (PRRs) by recognizing invading microorganisms, thereby triggering downstream immune events against infected pathogens. In this study, a novel CTL containing a low-density lipoprotein receptor class A (LDLa) domain was obtained from Litopenaeus vannamei, designed as LvLDLalec. Stimulation by the bacterial pathogen Vibrio anguillarum (V. anguillarum) resulted in remarkable up-regulation of LvLDLalec, as well as release of LvLDLalec into hemolymph. The rLvLDLalec protein possessed broad-spectrum bacterial binding and agglutinating activities, as well as hemocyte attachment ability. Importantly, LvLDLalec facilitated the bacterial clearance in shrimp hemolymph and protected shrimp from bacterial infection. Further studies revealed that LvLDLalec promoted hemocytes phagocytosis against V. anguillarum and lysosomes were involved in the process. Meanwhile, LvLDLalec participated in humoral immunity through activating and inducing nuclear translocation of Dorsal to regulate phagocytosis-related genes and antimicrobial peptides (AMPs) genes, thereby accelerated the removal of invading pathogens in vivo and improved the survival rate of L. vannamei. These results unveil that LvLDLalec serves as a PRR participate in cellular and humoral immunity exerting opsonin activity to play vital roles in the immune regulatory system of L. vannamei.


Assuntos
Infecções Bacterianas , Penaeidae , Animais , Lectinas Tipo C/genética , Fagocitose , Receptores de Reconhecimento de Padrão/genética , Bactérias/metabolismo , Crustáceos/metabolismo , Imunidade Inata/genética , Hemócitos , Proteínas de Artrópodes/genética
16.
FASEB J ; 38(2): e23433, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226893

RESUMO

Exosomes released from infected cells are thought to play an important role in the dissemination of pathogens, as well as in host-derived immune molecules during infection. As an intracellular pathogen, Spiroplasma eriocheiris is harmful to multiple crustaceans. However, the immune mechanism of exosomes during Spiroplasma infection has not been investigated. Here, we found exosomes derived from S. eriocheiris-infected crabs could facilitate phagocytosis and apoptosis of hemocytes, resulting in increased crab survival and suppression of Spiroplasma intracellular replication. Proteomic analysis revealed the altered abundance of EsTetraspanin may confer resistance to S. eriocheiris, possibly by mediating hemocyte phagocytosis in Eriocheir sinensis. Specifically, knockdown of EsTetraspanin in E. sinensis increased susceptibility to S. eriocheiris infection and displayed compromised phagocytic ability, whereas overexpression of EsTetraspanin in Drosophila S2 cells inhibited S. eriocheiris infection. Further, it was confirmed that intramuscular injection of recombinant LEL domain of EsTetraspanin reduced the mortality of S. eriocheiris-infected crabs. Blockade with anti-EsTetraspanin serum could exacerbate S. eriocheiris invasion of hemocytes and impair hemocyte phagocytic activity. Taken together, our findings prove for the first time that exosomes modulate phagocytosis to resist pathogenic infection in invertebrates, which is proposed to be mediated by exosomal Tetraspanin, supporting the development of preventative strategies against Spiroplasma infection.


Assuntos
Braquiúros , Exossomos , Spiroplasma , Animais , Hemócitos , Hemolinfa , Proteômica , Fagocitose , Drosophila , Tetraspaninas
17.
Artigo em Inglês | MEDLINE | ID: mdl-38278206

RESUMO

To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.


Assuntos
Braquiúros , Peróxido de Hidrogênio , Animais , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Antibacterianos/farmacologia , Proteínas Recombinantes/genética , Bactérias/metabolismo , Braquiúros/genética , Imunidade Inata , Filogenia , Proteínas de Artrópodes/genética , Hemócitos/metabolismo
18.
Fish Shellfish Immunol ; 146: 109405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278337

RESUMO

Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.


Assuntos
Astacoidea , Salvia miltiorrhiza , Animais , Astacoidea/genética , Hemócitos , Hepatopâncreas , 60435 , Fagocitose , Polissacarídeos/farmacologia
19.
BMC Genomics ; 25(1): 80, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243165

RESUMO

BACKGROUND: Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS: In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION: A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.


Assuntos
Anopheles , Animais , Feminino , Anopheles/genética , Anopheles/metabolismo , Hemócitos , Perfilação da Expressão Gênica , Transcriptoma , Proteínas/metabolismo
20.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256110

RESUMO

Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.


Assuntos
Crassostrea , Desoxiadenosinas , Histonas , Tionucleosídeos , Animais , Hemócitos , Crassostrea/genética , Interleucina-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...